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first W7-X H-Plasma 3.2.2016

http://www.ipp.mpg.de/
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Max-Planck Institut für Plasmaphysik / Greifswald branch

W7-X torus hall

NBI, cryo plant, 

pre-assembly, ICRH heating

microwave 

heating 

diagnostik, control room

Max-Planck Society :

86 Inst. ca 24000 People, ~2.5 Mrd. EUR/y 

-> basic research besides the Universities Greifswald branch dedicated to Projekt Wendelstein 7-X

~450 permanent staff: (typ.: 120 scientists

+ about 60 PostDocs, PhD , MSc students)

EUROfusion project + many oversees cooperations

IPP in Garching and Greifswald

power supply

3 experimental 

departments + 1 theory

2M Hirsch, PLADys Summer School, 6.8.2021

https://www.ipp.mpg.de/w7x

downtown Greifswald 



how to make the magnetic confinement

Lyman Spitzer Jr. 1951:

„there are three options to build nested flux surfaces

densely covered by magnetic field lines“

1. circular axis + internal current

Tokamak

toroidally symmetry

+ but dynamic of internal current

3M Hirsch, PLADys Summer School, 6.8.2021

2. circular axis

but 3D rotating cross section, 

e.g. a rotating ellipse

3. twisted axis



how to make it

Lyman Spitzer Jr. 1951:

„there are three options to build nested flux surfaces

densely covered by magnetic field lines“

1. circular axis + internal current

Tokamak

toroidally symmetry

+ but dynamic of internal current

Helical Devices / Stellarators have a 

3D topology and field strength 

3. twisted axis

2. circular axis

but 3D rotating cross section, 

e.g. a rotating ellipse

LHD / Toki, Japan

HSX / Madison, US
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Tokamaks and Stellarators

conceptual advantage: 

-> inherent ohmic heating

-> symmetry - engineering advantage

drawbacks: 

-> current drive required

-> current disruptions endanger device

-> density limit

-> current driven instabilities limit pressure gradient

conceptual advantage: 

-> no need for current drive: steady state capability

-> (no) current disruptions or current driven

instabilities, "less dynamic plasma control"

drawbacks: 

-> flux surfaces not guaranteed

-> EM forces between coil systems

-> no axissymmetry, plasma is 3D 

-> additional loss channels for collisionless particles

-> engineering and assembly complexity

-> danger of assymmetric wall load
however ...

... the 3rd dimension provides an additional degree of freedom

-> the design of magnetic confinement
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modular coils

W7-X

toroidal field 

coils

helical field 

coils
toroidal

poloidal

“unrolled”

torus surface:

-> no huge helical coils + mechanical forces remain in coil structure

-> design magnetic field geometry (cross section and magnetic axis) and field strength

first modular concept by Rehker and Wobig in 1972 

-> vary Fourier spectrum of current distribution

the concept of modular coils – the second generation

W7-A
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the design of magnetic confinement

Boozer, Nührenberg, Garbedian

toroidal symmetry (Tokamak):

 BB 

   BB

 BB 

quasi-isodynamic:

” linked mirror"

-> cannot be relized in toroidal 

geomety but approximations ... 

(W7-X is close to this class,   

Helioptron-J has aspects of it)

drawings show Bmod on a 

flux surface :

red high, blue small

"quasi symmetries": with respect to 

mod(B) on flux surfaces; cannot be 

exact but sufficient if B=const in grove 

where the trapped particles drift. 

quasi-helical "linear Stellarator like"

-> virtually no toroidal

curvature -> (high equilibrium beta!)

-> but jBS reduces shear

(HSX, Madison/Wisconsin)

 BB 

quasi-toroidal : “Tokamak-like”

(NCSX), China, Stellatok

+ several smaller approaches, 

classical

Lagrange formalism of guiding partice motion 

a new invariant of motion is derived if B 

depends on two of the coordinates (psi, phi, 

theta) only. The canonical momentum of this 

invariant is then conserved. 
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outline

1. the design of magnetic confinement

2. the WENDELSTEIN project – the optimized superconducting Stellarator

3. a review on Operational Phase 1 ...

4. and an outline towards OP2 (and beyond ... )
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(HELIcal axis Advanced Stellarator) 

-> drift optimization for thermal and fast ions

-> and reduced Shafranov shift (small PS currents)

can be realized simultaneously by the concept of

isodynamicity

(minimization of geodesic curvature of fieldlines = 

minimize field inhomogenities perpendicular to field-

lines = "minimizing the poloidal variation of modB = 

"a weak quasi-poloidal symmetry")

+ "helical and toroidal components of jBS cancel" !

-> minimization of the bootstrap current

= "stiff configuration"

+  low magnetic shear -> island divertor

modular coils allow to combine helical axis and plasma shaping such that 

necessary optimization criteria are fulfilled simultaneously: 

an integrated optimzation concept - the HELIAS
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=> Plasma and magnetic field decoupled as far as possible: “The pure Stellarator ....” 



iprofile
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rational surfaces may result in magnetic islands

using perturbed rational surfaces (“islands”) for plasma exhaust 
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The WENDELSTEIN Project - the optimized superconducting Stellarator 

R= 5.5m, a= 0.52 m, B=2.5T

50 non-planar coils + 20 planar + 5 trim coils 

+ in vessel divertor contro coils

254 peripheral ports

Vplasma=  30 m3 (-> AUG: 14 m3)

max. 1/30 g fuel in the plasma

2)  superconducting coils to develop an integrated 

high-density scenario with 

-> configuration control

-> density control (fuelling, pumping)

-> steady state ECRH in O2-polarization

allowing for high densities <2.4 1020 m-3

-> acceptable low impurity confinement a these 

densities

-> edge conditions compatible with divertor load 

(symmetry, detachment, pumping  ) 

as basis for high-power steady-state operation

1) verify stellarator optimization 

-> optimum mag. configuration, i-profile, divertor

-> reduced neoclassical transport in lmfp-regime

-> good fast particle confinement

-> minimized Shafranov shift improved MHD 

stability limits

-> minimized bootstrap current 

-> turbulent transport ?
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Wendelstein 7-X construction

engineering complexity building a 3D steady-state device

-> https://www.youtube.com/watch?v=MJpSrqitSMQ

-> deviations from symmetry in magnetic field 1mm
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http://www.youtube.com/plasmaphysik
https://www.youtube.com/watch?v=MJpSrqitSMQ


W7-X – Operational Phase 1 (2015-2018)
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W7-X – Operational Phase 1.1 (2015/16) 

first W7-X H-Plasma 3.2.2016

OP1.1 (2015/16): 5 inboard limiters, yet uncoverd first wall

-> short pulses (~few s), 6MW ECRH 
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W7-X – Operational Phase 1.2 (2017-2018) 

OP1.2 (2017-2018): geometrically identical test divertor 

but still no active cooling

-> 3000# up to 100s, 7 MW ECRH, 3.5MW NBI 
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island divertor configurations: 

The plasma edge topology is defined by island structures

resulting from the fivefold symmety



divertor strikelines

plasma boundary – the island divertor

16M Hirsch, PLADys Summer School, 6.8.2021

IR camera view

island divertor configurations: 

The plasma edge topology is defined by island structures

resulting from the fivefold symmety
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100s plasma at reduced heating power (2MW)

i.e. restricted to 200 MJ Energy (avoid overheating)

moderate density (safe X2 central heating, no detachment

-> discharge length only limited by maximum allowed divertor temperature 

a long-pulse probing the energy limit (status OP1.2b)
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• LHD "superdense core plasmas“ 

• W7-AS High Density H-mode

W7-X < 2 1020 m-3 reached with deep fuelling (NBI) 

or with XXX m-3 with pellets and O2 ECRH

NBI 3.6 MW

Te = 0.8 keV

Ti = 1.0 keV 

high-density operation – the stellarator way to fusion

Stellarators have no disruptive density limit.

(in Tokamaks: Greenwald limit) and

a generally benign behaviour at operational limits

high-density operation is preferable:

• ignition n ∙ Ti ∙ t 

• confinement (t improves with density 

• improved e-i coupling ~ n2

• fusion yield : ~ n2

• reduce fast ion losses to wall (a- particles !)

• lower  Tedge -> eases load to targets

• Bremsstrahlen and ECE losses increase with Te

but high-density operation requires 

-> heating to the core

-> density and impurity control

to avoid radiatin collapse 

(good wall conditions)

the magnetic field can confine a certain pressure ~ n ∙T
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O2 core ECR Heating

could be extended to steady state

• X2 plasma startup

• dynamic change of 

polarization from X2 

to O2

• O2 power increase
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O2 core ECR Heating

• X2 plasma startup

• dynamic change of 

polarization from X2 

to O2

• O2 power increase

 discharge 

maintained by O2 

heating only

21

could be extended to steady state



O2 core ECR Heating (and peaked ne profiles)

• X2 plasma startup

• dynamic change of 

polarization from X2 

to O2

• O2 power increase

 discharge 

maintained by O2 

heating only

 plasma density 

increase by 

pellet injection

above X2 cut-off

22

could be extended to steady state ??



bad coupling

Te = Ti

plateau ceiling

variation of  Pei

in plateau

each point 100ms

-> direct electron heating by (up tp 7.3MW

ECRH) provides up to Te=10keV

electrons

ion temperatures are clamped 

Beurskens et al NF_2019 

Bozhenkov et al NF 2019
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bad coupling

Te = Ti

plateau ceiling

variation of  Pei

in plateau

-> direct electron heating by (up tp 7.3MW

ECRH) provides up to Te=10keV

Beurskens et al NF_2019 

Bozhenkov et al NF 2019

-> anomalous transport (ITG turbulence?) 

clamps Ti and inhibits to reach neoclassical 

levels 

te-i =   0.06 x Te
3/2/ne

Pe-i = 3/2 x ne x (Te-Ti) / te-i

=  0.1 x ne
2 x (Te-Ti) /Te

3/2

ions

electrons

each point 100ms

steady state achievements: ion temperature clamping
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bad coupling

Te = Ti

plateau ceiling

variation of  Pei

in plateau

weak influence of the 

configuration <-> neoclassics

-> direct electron heating by (up tp 7.3MW

ECRH) provides up to Te=10keV

Beurskens et al NF_2019 

Bozhenkov et al NF 2019

-> anomalous transport (ITG turbulence?) 

clamps Ti and inhibits to reach neoclassical 

levels 

-> calculated neo-classical enery fluxes are 

well below the observed ones (30% 

stationary, 60% transient)

-> in classical stellarators similar parameters 

require much more heating power (e.g. W7-

AS ~ factor 2)  (optimization ?) 

te-i =   0.06 x Te
3/2/ne

Pe-i = 3/2 x ne x (Te-Ti) / te-i

=  0.1 x ne
2 x (Te-Ti) /Te

3/2

ions

electrons

each point 100ms

ion temperature clamping
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bad coupling

Te = Ti

plateau ceiling

variation of  Pei

in plateau

-> direct electron heating by (up tp 7.3MW

ECRH) provides up to Te=10keV

electrons

each point 100ms

-> anomalous transport (ITG turbulence?) 

clamps Ti and inhibits to reach neoclassical 

levels 

-> calculated neo-classical enery fluxes are 

well below the observed ones (30% 

stationary, 60% transient)

-> in classical stellarators similar parameters 

require much more heating power (e.g. W7-

AS ~ factor 2)  (optimization ?) 

ions

ion temperature clamping

Beurskens et al NF_2019 

Bozhenkov et al NF 2019
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bad coupling

Te = Ti

plateau ceiling

variation of  Pei

in plateau

peaked density profiles 

(only at low ECRH power)

-> peaked density profiles provide transiently 

improved ion confinement 

peaking of the density profile achived by 

deep fuelling and low edge densities 

-> pellets

-> sufficient NBI heating 

-> or off-axis ECRH (?)

ion temperature clamping

Beurskens et al NF_2019 

Bozhenkov et al NF 2019
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-> direct electron heating by (up tp 7.3MW

ECRH) provides up to Te=10keV

electrons

ions
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Courtesy of M. Kikuchi

W7-X

T. Sunn Pedersen et al, Phys. Plasmas 24 (2017) 055503

record triple

product of W7-X

100s with

only 2 MW X2 

Envisaged operation window

for OP2 starting 2021
30s @

5 MW X2

14s @

6 MW O2

towards long-pulse operation (status OP1.2b)
W7-X already broke all 

stellarator records

30M Hirsch, PLADys Summer School, 6.8.2021



31

engineering complexity – Completion Phase 2 (at present)

about 530 water cooling circuits for the 

fully cooled 10 high-heatflux divertors, 10 

cryopumps and the first wall. -> issues 

with thermal movements, vacuum ..  

MH: „... its an experiment with high flexibility 

not a reactor for reliable operation and easy 

maintenance .... „

Note : The optimization was with respect to 

the magnetic field – nor for operability ! 

source: IPP
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• 18GJ (30 min@10MW)

• interlaced high-power phases 

Operational Phase 2 

finalization of long-pulse capability

commissioning NBI21,

ICRH, steady-state pellets 

• 1GJ (100s)

• 2GJ (200s)

• 6GJ (10 min)

end

CP 2

OP 2.1

(2022)

OP 2.2

(2023)

OP 2.3

(2024)

OP 2.4

(2025)

fu
ll

 w
a
te

r

c
o

o
li

n
g

prepare for 

D2 operation

milestone:

Dec 2021

OP 3

(2030+)

• metallic PFCs

Heating extension: development 2MW gyrotrons -> PECRH ~14 MW cw 

-> NBI ~ 9MW (in H2) for ~10s

-> ICRH for start-up + fast particles 
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development of full metal machine 

...



Poicare plots

Bmod on flux surface

coil system

S. A. Henneberg et al Nucl. Fusion 58 026014

Quasi-Toroidicity

finally : thank you for yor interest     .... and offering a Hybrid

..... the “StellaTok” ?
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