

Max-Planck-Institut für Plasmaphysik

http://www.ipp.mpg.de/

Concept and Status of the Wendelstein 7-X Project

PLADyS Summer School 06.08.2021

Matthias Hirsch for the W7-X Team

Max-Planck-Institut für Plasmaphysik, Greifswald, EURATOM-Association

matthias.hirsch@ipp.mpg.de

first W7-X H-Plasma 3.2.2016

Max-Planck Institut für Plasmaphysik / Greifswald branch

M Hirsch, PLADys Summer School, 6.8.2021

how to make the magnetic confinement

Lyman Spitzer Jr. 1951: "there are three options to build nested flux surfaces densely covered by magnetic field lines"

(a)

3. twisted axis

1. circular axis + internal current

<u>Tokamak</u> toroidally symmetry + but dynamic of internal current

Helical coils but 3D rotating cross section, e.g. a rotating ellipse

how to make it

Tokamaks and Stellarators

conceptual advantage:

- -> inherent ohmic heating
- -> symmetry engineering advantage

drawbacks:

- -> current drive required
- -> current disruptions endanger device
- -> density limit
- -> current driven instabilities limit pressure gradient

however ...

... the 3rd dimension provides an additional degree of freedom -> the design of magnetic confinement

M Hirsch, PLADys Summer School, 6.8.2021

conceptual advantage:

- -> no need for current drive: steady state capability
- -> (no) current disruptions or current driven instabilities, "less dynamic plasma control"

drawbacks:

- -> flux surfaces not guaranteed
- -> EM forces between coil systems
- -> no axissymmetry, plasma is 3D
 - -> additional loss channels for collisionless particles
 - engineering and assembly complexity
 - -> danger of assymmetric wall load

the concept of modular coils - the second generation

first modular concept by Rehker and Wobig in 1972

-> no huge helical coils + mechanical forces remain in coil structure
 -> design magnetic field geometry (cross section and magnetic axis) and field strength

-> vary Fourier spectrum of current distribution

M Hirsch, PLADys Summer School, 6.8.2021

"quasi symmetries": with respect to mod(B) on flux surfaces; cannot be exact but sufficient if B=const in grove where the trapped particles drift.

quasi-helical "linear Stellarator like"

 virtually no toroidal curvature -> (high equilibrium beta!)
 but j_{BS} reduces shear

(HSX, Madison/Wisconsin)

toroidal symmetry (Tokamak):

 $B = B(\theta$

classical

quasi-toroidal : "Tokamak-like"

(NCSX), China, Stellatok + several smaller approaches, Lagrange formalism of guiding partice motion a new invariant of motion is derived if B depends on two of the coordinates (psi, phi, theta) only. The canonical momentum of this invariant is then conserved.

quasi-isodynamic: " linked mirror"

-> cannot be relized in toroidal geomety but approximations ...

(W7-X is close to this class, Helioptron-J has aspects of it)

- 1. the design of magnetic confinement
- 2. the WENDELSTEIN project the optimized superconducting Stellarator
- 3. a review on Operational Phase 1 ...

4. and an outline towards OP2 (and beyond ...)

an integrated optimzation concept - the HELIAS

(HELIcal axis Advanced Stellarator)

modular coils allow to combine helical axis and plasma shaping such that necessary optimization criteria are fulfilled simultaneously:

- -> drift optimization for thermal and fast ions
- -> and reduced Shafranov shift (small PS currents

can be realized *simultaneously* by the concept of **isodynamicity**

(minimization of geodesic curvature of fieldlines = minimize field inhomogenities perpendicular to fielc lines = "minimizing the *poloidal* variation of modB = "a *weak quasi-poloidal symmetry*")

- + "helical and toroidal components of j_{BS} cancel" !
 -> minimization of the bootstrap current
 - = "stiff configuration"
- + low magnetic shear -> island divertor

=> Plasma and magnetic field decoupled as far as possible: "The pure Stellarator"

using perturbed rational surfaces ("islands") for plasma exhaust

1) verify stellarator optimization

- -> optimum mag. configuration, 1-profile, divertor
- -> reduced neoclassical transport in Imfp-regime
- -> good fast particle confinement
- -> minimized Shafranov shift improved MHD stability limits
- -> minimized bootstrap current
- -> turbulent transport ?

2) superconducting coils to develop an integrated high-density scenario with

- -> configuration control
- -> density control (fuelling, pumping)
- -> steady state ECRH in O2-polarization
 - allowing for high densities $<2.4 \ 10^{20} \ m^{-3}$
- -> acceptable low impurity confinement a these densities
- -> edge conditions compatible with divertor load (symmetry, detachment, pumping)

as basis for high-power steady-state operation

R= 5.5m, a= 0.52 m, B=2.5T

50 non-planar coils + 20 planar + 5 trim coils + in vessel divertor contro coils

254 peripheral ports

 V_{plasma} = 30 m³ (-> AUG: 14 m³) max. 1/30 g fuel in the plasma

Wendelstein 7-X construction

engineering complexity building a 3D steady-state device

-> deviations from symmetry in magnetic field 1mm

->

W7-X – Operational Phase 1 (2015-2018)

W7-X – Operational Phase 1.1 (2015/16)

W7-X – Operational Phase 1.2 (2017-2018)

plasma boundary - the island divertor

high-density operation - the stellarator way to fusion

the magnetic field can confine a certain pressure \sim n \cdot T

high-density operation is preferable:

- ignition $n \cdot Ti \cdot \tau$
- confinement (τ) improves with density
- improved e-i coupling ~ n²
- fusion yield : ~ n²
- reduce fast ion losses to wall (α- particles !)
- lower Tedge -> eases load to targets
- Bremsstrahlen and ECE losses increase with Te

Stellarators have no disruptive density limit. (in Tokamaks: Greenwald limit) and a generally benign behaviour at operational limits

but high-density operation requires

- -> heating to the core
- -> density and impurity control to avoid radiatin collapse (good wall conditions)

W7-X < 2 10^{20} m⁻³ reached with deep fuelling (NBI) or with XXX m⁻³ with pellets and O2 ECRH

LHD "superdense core plasmas"

• W7-AS High Density H-mode

O2 core ECR Heating

could be extended to steady state

O2 core ECR Heating

could be extended to steady state

O2 core ECR Heating (and peaked ne profiles)

could be extended to steady state ??

- X2 plasma startup
- dynamic change of polarization from X2 to O2
- O2 power increase
- discharge maintained by O2 heating only
- plasma density
 increase by
 pellet injection
 above X2 cut-off

ion temperatures are clamped

Beurskens et al NF_2019 Bozhenkov et al NF 2019

steady state achievements: ion temperature clamping

ion temperature clamping

weak influence of the configuration <-> neoclassics

$$\tau_{e-i} = 0.06 \text{ x } T_e^{3/2}/n_e$$
$$P_{e-i} = 3/2 \text{ x } n_e \text{ x } (T_e-T_i) / \tau_{e-i}$$
$$= 0.1 \text{ x } n_e^2 \text{ x } (T_e-T_i) / T_e^{3/2}$$

ions

-> anomalous transport (ITG turbulence?) clamps Ti and inhibits to reach neoclassical levels

-> calculated neo-classical enery fluxes are well below the observed ones (30% stationary, 60% transient)

-> in classical stellarators similar parameters require much more heating power (e.g. W7-AS ~ factor 2) (optimization ?)

ion temperature clamping

ion temperature clamping

W7-X already broke all stellarator records

engineering complexity – Completion Phase 2 (at present)

source: IPP

M Hirsch, PLADys Summer School, 6.8.2021

about 530 water cooling circuits for the fully cooled 10 high-heatflux divertors, 10 cryopumps and the first wall. -> issues with thermal movements, vacuum ..

MH: "... its an experiment with high flexibility not a reactor for reliable operation and easy maintenance "

Note : The optimization was with respect to the magnetic field – nor for operability !

31

Operational Phase 2

finally : thank you for yor interest and offering a Hybrid

