平成26年9月26日(金) 9:50~15:00 北大院・エ・量子理エ

「核融合プラズマ科学特論」集中講義 磁場核融合プラズマの閉じ込め特性 (MHD平衡・安定性・輸送)

大学共同利用機関 自然科学研究機構核融合科学研究所

渡邊清政 北大院・エ・量子理工学専攻・核融合科学講座(客員)

核融合科学研究所

核融合科学分野における国立の研究所で、岐阜県土岐 市にある。核融合研究に関する大学共同利用機関で、 自然科学研究機構を構成する研究所の1つ。

大学共同利用機関は、最先端の研究に必要で、個々の大学が 単独で維持できない高度で大規模な研究施設を整備し、国内 外の研究者に効果的な利用環境を提供しています。 核融合研の大規模な研究施設;

大型ヘリカル装置、スーパーコンピュータ

総合研究大学院大学の物理科学研究科・核融合科学専攻等が併設され、大学院の学生に対する教育も実施している。

大型ヘリカル装置(LHD) 世界最大の超伝導核融合実験装置

核融合関連研究専用の スーパーコンピュータ

目次

- 午前、午後前半
 - 1. "核融合、プラズマ、磁場"の関係
 - 2.磁場核融合炉における「MHD」、「輸送」の役割
 - 3. MHD平衡
 - 4. MHD安定性
 - 5. 輸送現象(粒子拡散を中心に)
- 午後後半(15時~);講演を兼ねて 6. ヘリカル型核融合実験装置/LHDの最近の実験成 果と炉心プラズマ開発の展望

出欠;午前、午後前半、午後後半(15時~)の3回

核融合反応とは?

核融合反応とは:化学反応との比較
• 化学反応の場合(水素の燃焼)

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O(gas) + 242kJ/mol$$

 $H_2 + \frac{1}{2}O_2 \rightarrow H_2O(gas) + 4x10^{-19}J/1 分子(水素原子2個)$
 $N_A = 6.02x10^{23} (1/mol)$

核融合炉には高温プラズマの利用がベスト(I)

核融合には原子核同士の衝突が必要

常温の水素は、気体(分子/原子) => 原子(原子核の周りを電子が回っている) (原子の大きさは原子核の10万分倍)

原子(分子)のままでは、 電子(電子の雲)が邪魔で、 原子核は衝突できず

 $\Box >$

どのように高温高密度のプラズマを閉じ込めるか?

重力

どのようにしてプラズマを閉じ込めるか?

m
$$\frac{d\mathbf{v}}{dt} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

(E=000場合)
 $\mathbf{F} = q_s \mathbf{v} \times \mathbf{B}$
 $\mathbf{F} = \mathbf{F} + \mathbf{F} +$

荷電粒子は、両端の円形コイ ル付近で鏡(ミラー)のように反 射されて閉じ込められるが、一 部の粒子は逃げてしまう

荷電粒子は、両端の円形コイ ル付近で鏡(ミラー)のように反 射されて閉じ込められるが、一 部の粒子は逃げてしまう

端が無いように、繋げて環 状(トーラス)にしてやれば よい! 電流 磁力線 11

目次

1. "核融合、プラズマ、磁場"の関係 2. プラズマ閉じ込めにおける「MHD」、「輸送」の役割 3. MHD平衡 5. MHD安定性 6. 輸送現象(粒子拡散を中心に) 7. レポート課題

プラズマ閉じ込めにおける「MHD」、「輸送」の役割

「MHD平衡」、「MHD安定性」、「輸送」とは?

磁場核融合炉では. 磁場の容器中に高温高密度(高圧) のプラズマが長く留まって欲しい。

しかし、プラズマ自身も磁場を作る。 => プラズマが磁場の容器を変形さ せる。破壊する。

=>「MHD平衡」、「MHD安定性」

磁場の容器には、「すきま」がある。 =>「すきま」からプラズマが漏れ出る。 =>「輸送」

比喩であることに注意

13

プラズマ閉じ込めにおける「MHD」、「輸送」の役割

現象が起こる時間スケールが違う!!

- #「MHD平衡」の特性時間
 アルヴェン時間
 =装置サイズ/アルヴェン速度
 1m, 1T, 1x10²⁰m⁻³ で、1x10⁻⁶秒
- #「MHD安定性」の特性時間 アルヴェン時間x(10~1000)
- #「輸送」の特性時間
 「閉じ込め時間」
 =装置サイズ²/熱伝導度
 核融合炉で、1秒以上。
 大型実験装置で、0.1~1秒。

アルフベン速度 =
$$\sqrt{\frac{磁気圧}{質量}} = \sqrt{\frac{B^2/\mu_0}{\rho}}$$

<u>Magnetohydrodynamics</u>/電磁流体力学の略称

多数の粒子の振舞いを粒子の集団(流体)として捉える学問 分野の中で荷電粒子(プラズマ)を対象とし、電子とイオンを一 つの流体(電磁流体)として取り扱い、その力学的性質を調べ る学問

流体力学; 流体は通常、非常に多数の粒子から構成され、それぞれの粒子は、いろいろな空間位置に、いろいろな速度を持って存在する。これらの粒子群(流体)の性質を個々の粒子毎に調べるのではなく、「密度」,「温度」, 「圧力」,「流速」,「電荷密度」とか「電流」というある重みを持った平均量 (統計量)で表し,その振舞いを調べる研究手法.

「MHD平衡、安定性」は、「電磁流体力学」の見地から見た「カの平衡、安定性」を表す.

MHD平衡、安定性研究とは?

MHD平衡研究;

プラズマをそっと磁場の容器に入れた時に、プラズマがそこにじっとしてるか ?、容器から逃げ出すか(容器が壊れないか)?、じっとしているための条件は 何か?

MHD安定性研究:

磁場中でじっとしているプラズマをちょっとだけ動かしてみた時、プラズマは その場に留まっているか?逃げ出してしまわないか?逃げ出すとしても全て 逃げ出すのか?留まっているための条件は何か?

プラズマ自体も磁場を作ることが状況を複雑化; プラズマは荷電粒子の集まりなので、荷電粒子が動くと電流、磁場を発生 する(特に、圧力勾配があると電流が誘起される) 16

MHD平衡

平衡(カの均衡)が崩れると、プラズマが全体的移動して、閉じ込め容器を破壊。

MHD平衡研究; プラズマをそっと磁場の容器に入れた時に、プラズマがそこにじっとしてる か?、容器から逃げ出すか(容器が壊れないか)?、じっとしているための条件 は何か? MHD(流体)に基づく考察をする前に

個々の荷電粒子の振舞いの基本;粒子のドリフト

荷電粒子は0次の運動としては磁力線に巻きついて運動するが、磁場強度 に分布があったり、電場があると磁力線から離れる運動(ドリフト)をする。こ れを理解することがプラズマの振舞いの定性的な理解につながる。

ラーマ半径が回転中に変化する ため、イオンはBx∇B 方向へドリ フトする。

電子は反対方向ヘドリフトする。

荷電粒子の速度が回転中に変化 するため、イオンはExB方向ヘドリ フトする。

電子も同方向**ヘ**ドリフトする。 ¹⁸

環状磁場のみではプラズマは閉じ込められない - 粒子的描像 -

対処法

副方位角方向の磁場を付加し(B_p≠0)、ドーナッ ツ上部と下部に分離した電荷を短絡する。 ↓

ExBドリフトによるプラズマの移動を抑える。

<u>B_pの生成法</u> トカマク/ プラズマ中に電流を流す。 ヘリオトロン(ヘリカル)/外部コイルを螺旋 状にねじる。

電子の方が軽く移動し やすいので、電子が動く

トーラスに沿って磁力線にひねり (回転変換)を与える → 磁気面の構成

磁力線をひわる必要性をMHD (流体) 的に考える -定量的評価が容易-

MHDとは

<u>Magnetohydrodynamics/電磁流体力学の略称</u>

多数の粒子の振舞いを粒子の集団(流体)として捉える学問 分野の中で荷電粒子(プラズマ)を対象とし、電子とイオンを一 つの流体(電磁流体)として取り扱い、その力学的性質を調べ る学問

流体力学;

流体は通常、非常に多数の粒子から構成され、それぞれの粒子は、いろいろな空間位置に、いろいろな速度を持って存在する。これらの粒子群(流体)の性質を個々の粒子毎に調べるのではなく、「密度」,「温度」,「圧力」,「流速」,「電荷密度」とか「電流」というある重みを持った平均量(統計量)で表し、その振舞いを調べる研究手法.

「MHD平衡、安定性」は、「電磁流体力学」の見地から見た「カの平衡、安定性」を表す. 21

プラズマの密度、温度、圧力、流速の関係 (I)

熱平衡状態(衝突が十分大きく、十分時間がたった状態); 粒子群の速度分布は等方で、速度の絶対値に関してガウス分 布(マックスウェル分布)となる。

その分布の分散をT/m、平均をuと定義すると、

$$f \propto \exp\left(\frac{m(\mathbf{v}-\mathbf{u})^2/2}{T}\right);$$
ボルツマン係数は略

$$N \equiv \int f d\mathbf{v};$$
 全粒子数をNとすると=> $f = N \left(\frac{m}{2\pi T}\right)^{1.5} \exp\left(\frac{m(\mathbf{v}-\mathbf{u})^2/2}{T}\right)$

$$\int \frac{m(\mathbf{v} - \mathbf{u})^2}{2} f d\mathbf{v} \Longrightarrow \frac{3}{2} NT$$

平均速度で動いている系で見た時の粒子群のエネルギー(熱ネルギー)

プラズマの密度、温度、圧力、流速の関係 (II)

簡単のため、流速を0として、圧力を考えてみる。

1個の粒子が壁に与える運動量は

2mv_x 面積S_xの壁に単位時間当たりに当たる粒子の 個数は密度をnとして

 $v_x S_x n$ したがって、単位時間当たりに面積 S_x の壁が受ける運動量(力)は、

 $2mv_x^2S_xn$ 等方を仮定し、面積で割ったものが圧力pなので、 $p=2mn < v^2 > /3=nT$

圧力は密度と温度の積で表される。

環状磁場のみではるうズマは閉じ込められない;流体的描像I

磁場中で密度、温度(圧力)勾配があると電流が流れる

磁場、圧力勾配の両方に垂直で、dp/drに比例、Bに反比例 =>jxB=grad P

電流が流れることにより、磁場が変化すること。圧力勾配は電流、磁場双方に垂直であるため、 磁場の向きが変わると圧力分布も変わることに注意(トーラス形状では磁場の向きも変化;後述)。 => 反磁性電流が有限圧力時の磁場構造(MHD平衡)を真空磁場から変える源

磁場強度に不均一性がある時の反磁性電流

プラズマによる閉込め磁場の変化 -磁気軸のシフトに着目して-

どのようにして、磁場をねじるか ーヘリカル方式とトカマク方式一

外部コイルのみにより回転変換を与え、磁気面を形成する。
連続運転に適している。
構造が複雑。 *技融合研の*北田D
我が国独自のアイデアにより
開発(我が国のオリジナル)。

トーラス方向に電流を流すこ とにより回転変換を与え、外 部コイルとの組み合わせにより磁気面を形成する。

連続運転のためには、プラズ マ電流を維持する必要がある。

構造が簡単。

#トカマクでは、閉じ込め磁場を維持するのに必須。典型的にはトランスの原理 で電流を駆動。流れている電流の評価は、MHD平衡磁場の同定、プラズマの 運転制御に必須。

> 各種電流でどんな磁場が誘起されるか? その磁場を測るためのコイル形状は??²⁹

*補*磁場計測によるプラズマ電流計測 II

 $d\Phi/dt = RI_p$

オーミック電流

オーミック電流は磁力線に沿って流れる。

MHD安定特性

典型的な不安定状態では、プラズマの平均的な位置は変わら ず、揺動が大きくなり、最終的にはプラズマを破壊する。

MHD安定性研究;

磁場中でじっとしているプラズマをちょっとだけ動かしてみた時、プラズマは その場に留まっているか?逃げ出してしまわないか?逃げ出すとしても全て 逃げ出すのか?留まっているための条件は何か?

MHD不安定性の原因

磁場中のプラズマが不安定になる原因は、以下の2つ. (1) 圧力勾配 (圧力駆動型) (2) 電流 (電流駆動型)

(1)はヘリオトロン(ヘリカル)
方式でよく問題になり、
(2)はトカマク方式でよく問題
となる.

プラズマを揺らすとその振 幅が大きくなるか? 元の位 置のとどまれるか? MHD(流体)に基づく考察をする前に

圧力駆動型MHD不安定性

磁場中のプラズマに圧力勾配があると、不安定性が起こる。 不安定性の起こる条件; 磁場強度が強まる方向にプラズマ圧力(密度x温度)が大きくなる

環状磁場プラズマでの交換型MHD不安定特性 I

ExBドリフトが揺動を成長させる。 # 揺動と共鳴する有理面の場合、磁 力線に沿って電子が進み分離電荷 をキャンセルできずに、有理面上い たるところで揺動が成長する。

揺動のモード数と共鳴する有理面

回転変換(磁場のねじれのピッ チ)が*n/m=>* 磁力線がトロイダル方向に*n*周

磁力線が下口4 クルカ间に加高 ポロイダル方向にm周回ると閉 じる。

揺動のトロイダルモード(周期) 数がn, ポロイダルモード数がm =>

揺動がトロイダル方向にn周ポ ロイダル方向にm周進むと山 谷が一致

環状磁場プラズマでの交換型MHD不安定特性 II

圧力駆動型不安定性に対する「磁力線のねじれ」の効果

磁力線のねじれ(磁気 シア)のある磁気面

η 垣面 ι=*n/m*. ιは回転変換。*n*,*m*は整数。 不安定性(摂動)が磁気面をまたがって成 長するためには、近接した磁気面上の磁 力線の向きが不安定な磁気面と同じにす る必要あり。

さもないと、近接した磁気面で発生した分離 電荷は、電子が磁力線方向に動くことにより キャンセルされ、不安定性は成長出来ない。

=>

→

磁力線の向きの変更には、エネルギーが必要

磁気シアには安定化効果あり。

電流駆動型MHD不安定性の描像

(ソーセージ不安定性)

(キンク不安定性).

加速度的に状態が元の状 態から変化 => 不安定

MHD方程式

電子・イオンの2つの流体方程式(粒子源・熱源無)を1流体化。 イオンと電子の流速はほぼ同じと仮定し、電子とイオンは一体として運動。 (電子の慣性/加減速応答はゼロと仮定。イオン・電子の流速差は電流として考慮) $\rho \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \right) \mathbf{v} = \mathbf{j} \times \mathbf{B} - \nabla p,$ 運動方程式 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0,$ 質量保存則 $\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \left(\frac{p}{\rho^{\gamma}}\right) = 0,$ エネルギー保存則 $\mathbf{E} + \mathbf{v} \times \mathbf{B} = \eta \mathbf{j},$ 一般化したオームの法則 $\nabla \times \mathbf{B} = \mu_0 \mathbf{j}, \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \cdot \mathbf{B} = 0.$ マックスウェル方程式

抵抗ηをゼロと仮定したものが、理想MHD方程式

流速は*u~ExB*/B²,磁力線方向の電場は無し。*ExB*/B²は熱速度程度の大きな流速 を仮定し、熱速度程度の速い速度で磁力線を横切る急激な不安定性を扱う。 MHD方程式の特徴

規格化/無次元化 $\hat{\rho} = \frac{\rho}{\rho_0}, \hat{\mathbf{v}} = \frac{\mathbf{v}}{\mathbf{v}_A}, \hat{\nabla} = a_0 \hat{\nabla}, \hat{t} = \frac{t}{a_0/\mathbf{v}_A}, \nabla \hat{\mathbf{B}} = \frac{\mathbf{B}}{\mathbf{B}_0}, \hat{p} = \frac{p}{p_0}$ (基準値で割る)

MHD現象は、 **圧力分布、磁場分布、β(ベータ値)が同じだと相似に振舞う**(ある装置でβが制限されると、それは装置サイズによらない) ⁴¹

補 MHD方程式と線形化 (I)

MHD方程式で表される現象の性質を摂動法を使って考えるためにMHD 方程式を線形化する。摂動法(物理量の時間変化部は微小で、微小量同 士の掛け算は無視)

$$\mathbf{v}(\mathbf{r},t) = \mathbf{v}_{0}(\mathbf{r}) + \mathbf{v}_{1}(\mathbf{r},t), \ \mathbf{v}_{0}(\mathbf{r}) = 0, \qquad \mathbf{j}(\mathbf{r},t) = \mathbf{j}_{0}(\mathbf{r}) + \mathbf{j}_{1}(\mathbf{r},t), \ \left|\mathbf{j}_{1}\right| << \left|\mathbf{j}_{0}\right|, \\ \mathbf{B}(\mathbf{r},t) = \mathbf{B}_{0}(\mathbf{r}) + \mathbf{B}_{1}(\mathbf{r},t), \ \left|\mathbf{B}_{1}\right| << \left|\mathbf{B}_{0}\right|, \qquad \mathbf{E}(\mathbf{r},t) = \mathbf{E}_{0}(\mathbf{r}) + \mathbf{E}_{1}(\mathbf{r},t), \ \mathbf{E}_{0}(\mathbf{r}) = 0, \\ \rho(\mathbf{r},t) = \rho_{0}(\mathbf{r}) + \rho_{1}(\mathbf{r},t), \ \rho_{1} << \rho_{0}, \qquad p(\mathbf{r},t) = p_{0}(\mathbf{r}) + p_{1}(\mathbf{r},t), \ p_{1} << p_{0}.$$

微小物理量が満たすべき式は、以下のとおり。

$$\rho_{0} \frac{\partial \mathbf{v}_{1}}{\partial t} = -\nabla p_{1} + \mathbf{j}_{1} \times \mathbf{B}_{0} + \mathbf{j}_{0} \times \mathbf{B}_{1}, \quad \frac{\partial \rho_{1}}{\partial t} + \nabla \cdot (\rho_{0} \mathbf{v}_{1}) = 0,$$

$$\frac{\partial p_{1}}{\partial t} = -\mathbf{v}_{1} \cdot \nabla p_{0} - \mathcal{P}_{0} \nabla \cdot \mathbf{v}_{1}, \quad \mathbf{E}_{1} + \mathbf{v}_{1} \times \mathbf{B}_{0} = 0,$$

$$\nabla \times \mathbf{B}_{1} = \mu_{0} \mathbf{j}_{1}, \quad \nabla \times \mathbf{E}_{1} = -\frac{\partial \mathbf{B}_{1}}{\partial t}, \quad \nabla \cdot \mathbf{B}_{1} = 0.$$

まとめると、
$$\rho_{0} \frac{\partial^{2} \mathbf{v}_{1}}{\partial t^{2}} = -\nabla \{\mathbf{v}_{1} \cdot \nabla p_{0} + \mathcal{P}_{0} \nabla \cdot \mathbf{v}_{1}\}_{1} + \mathbf{j}_{0} \times \{\nabla \times (\mathbf{v}_{1} \times \mathbf{B}_{0})\} + \frac{1}{\mu_{0}} [\nabla \times \{\nabla \times (\mathbf{v}_{1} \times \mathbf{B}_{0})\}] \times \mathbf{B}_{0}.$$

式の物理的描像の明確化のため、変位ベクトルく(\partial \xi/\partial t = \mathbf{v}_{1})を導入すると

$$\rho_{0} \frac{\partial^{2} \xi}{\partial t^{2}} = \mathbf{F}(\xi),$$

$$\mathbf{F}(\xi) = -\nabla \{\xi \cdot \nabla p_{0} + \mathcal{P}_{0} \nabla \cdot \xi\} + \frac{1}{\mu_{0}} (\nabla \times \mathbf{B}_{0}) \times \mathbf{Q} + \frac{1}{\mu_{0}} (\nabla \times \mathbf{Q}) \times \mathbf{B}_{0}.$$

$$\exists \mathbf{C} \nabla \times (\xi \times \mathbf{B}_{0}).$$

$$42$$

補 MHD方程式と線形化 (II)

線形の安定特性を調べるために、微小物理量の時間変化は、以下のような指数的な依存性をもつと仮定すると、前ページの式は以下のように変形できる。

$$\boldsymbol{\xi}(\mathbf{r},t) = \boldsymbol{\xi}_{\omega}(\mathbf{r}) \exp(-\mathrm{i}\omega t).$$

$$-\rho_0\omega^2\boldsymbol{\xi}=\mathbf{F}(\boldsymbol{\xi}).$$

考察する系全体についての運動を考えて、積分すると左辺がプラズマの 運動エネルギーの時間変化に対応、右辺がプラズマの位置エネルギー の変化に対応することがわかる。また、ωが虚数だと変位ベクトルの絶対 値が増加するので、δWが負が不安定の条件であることがわかる。

$$\frac{1}{2}\rho_0\omega^2 \int dV\xi^*\xi = -\frac{1}{2}\int dV\xi^*\mathbf{F}(\xi) \Longrightarrow \mathbf{K} \equiv \frac{1}{2}\rho_0 \int dV\xi^*\xi, \ \delta \mathbf{W} \equiv -\frac{1}{2}\int dV\xi^*\mathbf{F}(\xi).$$
$$\Longrightarrow \omega^2 \mathbf{K} \equiv \delta \mathbf{W}.$$
$$\Longrightarrow \omega^2 = \frac{\delta \mathbf{W}}{\mathbf{K}}.$$

補 MHD方程式と線形化 (III)

キンク不安定性の観測例 ---TFTR(Tokamak Test Fusion Reactor;米国)---

成長率の観測値はキンク不安定性の理論予測より数10倍遅い

150µsでプラズマが消滅

45 M.Okabayashi et al; Nucl. Fus. 38, 1149 (1998).

粒子源·熱源なしに容器からプラズマがなくなるのにかかる時間は?

輸送研究; 磁場の容器の「すきま」からプラズマが漏れ出る機構の研究

核融合発電を起こすために必要なプラズマの条件は?

総熱出力; $P_{F}+P_{I}+P_{R}$ のη倍が電気出力に変換し、プラズマに再入力できると すると、核融合反応が維持できる条件は、

100

 $\eta^*(P_F+P_L+P_R) > P_L+P_R = > P_F > (1/\eta-1)^*(P_L+P_R); ローソン条件$ 温度が高くて、
てが大きく、
粒子数が多いほど良

$$P_L >> P_R$$
の時、 $(nT)^2 V > k(nTV/\tau) \implies n\tau T > k$

核融合反応を連続して維持するには、プラズマを高温・高密度に維持する必要あり 48 $=> P_{I}, P_{R}$ は、核融合出力の一部で賄われる必要あり。

閉じ込め時間とは??;プラズマの冷え難さの目安

右図で、魔法びんのお湯 の方が冷え難い => 熱いお湯を維持するの に必要なエネルギーが少 なくて済む

核融合反応には、高い温 度が必要 「長い閉じ込め時間」 => 少ないエネルギーで大きな 核融合反応エネルギーを 取り出せる 49

「閉じ込め時間」と「維持時間」の違いは何??

粒子の損失機構

核融合炉心プラズマからの粒子、熱の損失機構として、拡散、伝 導、移送、輻射を挙げることができる。ここでは、粒子の損失機構 を考えてみる。

粒子の損失機構には、「流れに よる粒子の輸送」、「拡散」が ある。

トーラスで,シアのある磁場

流れによる粒子の輸送: 流れが存在すると、粒子は流れに沿って輸送される. 粒子束=密度×流体の速度 [Γ=nu] 粒子束: ある面を横切って単位時間当たり輸送される粒子数 # 拡散: 流れが存在しなくても密度勾配があれば、衝突により密度高 から低へ粒子が輸送される。 粒子束=拡散係数x(-勾配) [Γ=Dx(-dn/dr)] 51

#拡散が起こる時の現象の典型的な衝突

古典拡散

ー様磁場中のプラズマは、「ラーマ(回転)運動」をしながらクーロン衝突によりその 位置を移動 => 密度の勾配(偏り)があると密度の低いほうへ移動 => 古典拡散

特徴的な衝突は、 イオンの場合、イオン同士の衝突 電子の場合、電子同士またはイオンとの衝突 特徴的な衝突による移動距離は、 ラーマ半径(イオン) => 古典拡散の拡散係数; r_{Bi}²V_{ii}(イオン), r_{Be}²V_{ei}(電子)

イオンの拡散係 数は電子の約 40倍 質量比の0.5乗

粒子束=拡散係数x(-勾配)

補磁場に強弱がある時の荷電粒子の運動

磁場強度に強弱がある時の荷電粒子の運動

電場がゼロで磁場がゆっくり変化している 場の荷電粒子は、運動エネルギーの他に 磁気モーメントが保存する。

$$\begin{aligned} \frac{mv_{//}^{2}}{2} &= E - \mu_{m} B \downarrow 0 \\ E &< \mu_{m} B_{max} \mathcal{O}$$
粒子は $B = B_{max} \mathcal{O}$ 領域に到達できない。
$$=> \frac{mv_{//0}^{2}}{2} + \frac{mv_{\perp 0}^{2}}{2} < \frac{mv_{\perp 0}^{2}}{2} \frac{B_{max}}{B_{min}} \\ => z = 0 \\ \hline \sim , \left| \frac{v_{//0}}{v_{\perp 0}} \right| < \sqrt{\frac{B_{max}}{B_{min}}} - 1 \\ \mathcal{O} \\ \hline a \\ B &= B_{max} \\ \mathcal{O}$$
領域に到達する前に磁場の弱い方へ反射される。
$$=>$$
捕捉粒子と呼ばれる粒子が存在する。

$$\mu_{\rm m} \mathcal{O} 保存(\left| \frac{1}{\Omega} \frac{1}{B} \frac{\partial B}{\partial t} \right| <<1\mathcal{O} 時)$$

$$\frac{d}{dt} (m\mathbf{v}) = q(\mathbf{E} + \mathbf{v}_{\perp} \times \mathbf{B})$$

$$\frac{d}{dt} \left(\frac{m\mathbf{v}_{\perp}^{2}}{2} \right) = q\mathbf{v}_{\perp} \cdot \mathbf{E}$$

$$\Delta W_{\perp} = \int q\mathbf{E} \cdot \mathbf{v}_{\perp} dt = \int q\mathbf{E} \cdot d\mathbf{s} = \int q(\nabla \times \mathbf{E}) \cdot \mathbf{n} dS = q \int \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{n} dS$$

$$\sim q \frac{\partial}{\partial t} \int \mathbf{B} \cdot \mathbf{n} dS \sim q \frac{\partial B}{\partial t} \pi \rho_{B}^{2} = \frac{2\pi}{\Omega} \frac{\partial B}{\partial t} \frac{q\Omega \rho_{B}^{2}}{2} \sim \Delta B \frac{W_{\perp}}{B}$$

$$\frac{\Delta W_{\perp}}{\Delta B} = \frac{W_{\perp}}{B} => \mu_{m} \equiv \frac{W_{\perp}}{B} = \text{const.}$$

*補*いねりのある環状磁場中(トカマクプラズマ)の粒子の運動

荷電粒子は基本的には 磁力線に巻きつきながら (磁力線に沿って磁気面 上を)運動するが、磁場 強度が変化すると、磁気 面からずれて運動する。 =>

磁力線方向の速度小さ いとドーナッツをぐるぐる 回れなくなる(捕捉粒子)。

磁力線の距離 55

新古典拡散(フィルシュ・シュルター[PS]領域)

磁場が空間的に非一様中のプラズマのクーロン衝突による拡散

=> 新古典拡散と呼ぶ

粒子束=拡散係数x(-勾配)

新古典拡散(バナナ領域)

衝突が少ないと何回も捕捉軌道を描く
 ことができる粒子が増える。
 考えているような振る舞い(捕捉粒子)
 の粒子の割合は、
 f=ɛ^{0.5}
 特徴的な衝突周波数は、
 クーロン衝突により速度分布が変わ

り、捕捉状態から、非捕捉状態に移る 時間

バナナ幅 $\Delta_{
m b}$ => <mark>拡散係数</mark>;

$$D_{banana} \sim \frac{m v_{\perp}}{q B} \frac{v_{\prime\prime}}{v_{\perp}} \frac{B}{B_{p}} \sim \mathcal{E}_{t}^{-1.5} \left(\frac{r_{Bi}}{t}\right)^{2} V_{ii}$$

 $D_{banana}/D_{ps} \sim \varepsilon_t^{-1.5} >> 1$ バナナ拡散はPS拡散と温度、密度依存性は 57 同じで絶対値が大きい

乱流による粒子の輸送

流れによる粒子の輸送の一種に乱流による輸送がある。「異常 輸送」の主要な原因と考えられている。

乱流; いろいろな波長と位相の揺動が混在している状態

乱流による粒子の輸送(続き)

核融合実験プラズマ中の主な速度揺動は、電場と関連。 => ExBドリフトによる流れ $u \sim E_{pol}/B_{tor}$

 \Rightarrow 粒子束~ $<\delta n \delta E_{pol} > / B_{tor}$

密度揺動、電場揺動の原因
 各種不安定性が、乱流揺動の原因。
 例; イオン温度勾配不安定性、ドリフト波不安定性、
 MHD不安定性など。

代表的な乱流輸送による粒子束のモデル表式 ボーム(B)型、ジャイロボーム(GB)型

$$\Gamma_B \sim -\frac{T}{B} \frac{\mathrm{d}n}{\mathrm{d}r}, \ \Gamma_{GB} \sim -\frac{T}{B} \frac{r_{Bi}}{a} \frac{\mathrm{d}n}{\mathrm{d}r}$$

環状磁場プラズマの輸送特性(続き)

エネルギー保存則より q: 熱流束、 P. 加熱パワー

$$\tau = a^2/\chi$$
と書くと、
$$\frac{\partial W_p}{\partial t} = \frac{W_p}{\tau} + Q \qquad W_p/\tau$$
は熱損失。

61

熱伝導度~拡散係数D

環状磁場プラズマの輸送特性(続き)

$$\chi_{banana} \sim (R/a)^{1.5} T^{-0.5} B^{-2} n^{1} \sim n^{1} T^{-0.5} B^{-2} a^{-1.5} R^{1.5}$$

$$\chi_{B} \sim T^{1} B^{-1} \sim T^{1} B^{-1}$$

$$\chi_{GB} \sim a^{-1} T^{1.5} B^{-2} \sim a^{-1} T^{1.5} B^{-2}$$

$$nT > k (n^{1} T^{-0.5} B^{-2} a^{-1.5} R^{1.5} / a^{2}) \sim k n^{1} T^{-0.5} B^{-2} a^{-3.5} R^{1.5}$$

$$= T^{1.5} B^{2} a^{3.5} R^{-1.5} > 1/k$$

$$\pi - \Delta \Psi$$

$$nT > k (n^{1} T^{-0.5} B^{-2} a^{-1.5} R^{1.5} / a^{2}) \sim k T^{1} B^{-1} a^{-2}$$

$$= n^{1} B^{1} a^{2} > 1/k$$

$$\forall \tau < \Delta \Psi$$

$$nT > k (a^{-1} T^{1.5} B^{-2} / a^{2}) \sim k T^{1.5} B^{-2} a^{-3}$$

$$= n^{1} T^{-0.5} B^{2} a^{3} > 1/k$$

$$62$$

62

環状磁場プラズマの輸送特性(更に続き)

乱流輸送の物理機構 の解明とともに、実験 に基づく半実験式を構 築し、それを使って将 来の核融合プラズマを 予見

 $\tau_{ISS04} \sim n^{0.54} P^{-0.61} B^{0.84} a^{2.28} R^{0.64}$

ヘリカル型実験装置による閉 じ込め時間の半実験則

 $\tau_{GB} \sim n^{0.6} P^{-0.6} B^{0.8} a^2 R^{0.6}$

まとめ

閉じ込め特性の指標である 「MHD平衡」、「MHD安定性」、「輸送」特性 に関する基礎を概説した。